o P

e - — i kd .
. H o _{q—

I . 4

Quantltatwe AnalYSIS of Charge Injectlon and . "
Dlscharglng of Si Nanocrystals and Arrays by -
| Electrostatlc Force Mlcroscopy g

. LD.Belt
Jet Propuls:on Laboratory, Caltech

E Boer, M. Ostraat M.L. Brongersma RC Flagan, HA Atwater
| Caltech /- B

Bl Lk v i

Lucant Technologies



Nanocrystal Nonvolatile Memory
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Introduction / Background

* NASA requirements for computing and memory for microspacecraft emphasize
high density, low power, small size, and radiation hardness.

* The distributed nature of a storage elements in nanocrystal floating-gate
memories leads to intrinsic fault tolerance and radiation-hardness.

Conventional floating-gate non-volatile memories are more susceptible to
radiation damage.

* Nanocrystal-based memories also offer the possibility of faster, lower power
operation.

» Write: electrons tunnel from substrate
channel into nanocrystal storage nodes.

* Non-destructive readout: performed by
sensing the field from the stored charge.
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Nanocrystal Nonvolatile Memory

Why Small Is Good

GaAs/AlGaAs Dual gate device
(e-beam lithography)

t=5-25 nm
r = 25-50 nm

C=1-10fF
AE,,. = €%/2C = 0.05-0.5 meV

T at 300K, kT = 26 meV

Size-classified Si nanoparticle on SiO,

—»54— l t=2-5nm
- r=2-5nm
L « C=1-10aF |
T AE,. = e?/2C = 50-500 meV

Si nanocrystal memories may enable room-
temperature sensing of single-electron storage
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State of the Art

Si

N Advantages of a nanocrystal floating gate:
Turnel Oxide anocrystals g y 99

« thin tunnel oxide - fast

« small nanocrystal size - lower power

+ isolated nanocrystal floating gates -
greater reliability

;;:,,:---*'“"“"'”}

Wide distribution of
Previous work: nanocrystal size and placement
(Tiwari, IBM) (memory element non-uniformity)
Single-particle ' \/
addressing by h D

® hz* ® ® o
AFM ; . 0°® of [ @ ©
_ Uniform nanocrystal size

Fu_ture goal: and placement
uniform nc (memory element uniformity)
ensembles D b i
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Si Nanocrystal Synthesis by Implantation

lon implantation

35 keVSi*l l l l Dose: 4x1016 ions/cm?

I100nm Si0,

>

Vacuum anneal 1100°C, 10 minutes

: 1

100nm

<« >

K.S. Min et al. Appl. Phys.Lett. 68, 2511 (1996)
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Charging of lon-implanted Si Nanocrystals

Nanocrystal Nonvolatile Memory

® Apparent height of charged area ranges from 11.2 nm to 4.4 nm.

® Significance: Charging / discharging can be seen. Individual memory element operation can be

simulated and observed.

Nanocrystal charging/discharging can be imaged
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Charging of lon-implanted Si Nanocrystals

Data agrees well with a model for
tunneling through a field-lowered
barrier

« AFM measurements can be used
to track and quantify the slow
discharge of a nanocrystals
implanted within an oxide layer.

» Charging is measured by the
AFM tip as a localized apparent
height change.

- APPARENT HEIGHY (nm)

1 1 1 1 |

200 400 l 6(I)0 | 8(I)0 10|00l 1200
ELAPSED TIME (sec)
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Nanocrystal Nonvolatile Memory

t=57s ""'"\""‘I?

4 x 1018 at/cm?, annealed 1100°C,
10 minutes

2 um
Where is the charge stored?

surface states? nanocrystals?

\‘ /

interface states?
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ni'g;_A Is Charge Stored in Nanoparticle Floating Gate =
| or Oxide Defects?
t=0 t=57s

lon-implanted
Si nanoparticle
floating gate
material:
Stores Charge

16 nm

<«— 05um —p

Similar oxide, no Si
nanoparticles, but ion-
damaged by Ar *
implantation:

No Measurable
Charge Storage

Locus of Charge Storage is
S; Nanogamcle Floating Gate, Not Oxide Defects
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Interpretation of Charging Data

What we want to determine:

 How much charge is stored? I or or...?

- Distribution of charge? i or iy or.?
. Miccimats " 5
Dissipation of charge* - j__» or t‘i or..:

Model requirements:

\/ * Tip-sample convolution

 Tip-charge interaction vs.
e normal AFM operation
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Model: AFM Tip-Charge Distribution Interaction

qy at

Trapped charge Qg
at (Xsi’ysifzsi)

Method of
Images

Substrate

D; = (Zsi — Zt )2 + (Xsi — Xti)2 + (ysi - yti)2

*
Coulomb interaction |F _ Qsi Q4 x)
between g ; and g ! 4ngoD§ !
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Non-Contact AFM Maps Height at - N
Constant Force Gradient

*
Coulomb interaction c _ Os; ~ )
between g and g ! 4ngoD§ !

Find z-component of electrostatic
force; differentiate by z:

Finally, total force gradient is sum of
electrostatic and Van der Waals interactions

oF oF oF
( aZZ )tot — (a_ZZ)VdW + ;( aZZ )ij = ConSt
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Some Assumptions: Buried NC Charging

» Charge distribution: uniform, coarse
grid, only on surface -- appropriate for
these samples

* Neglect image charge in substrate -->
Good approximation due to distances
involved

 Neglect topography 50 nm

» Neglect effect of hydrodynamic
damping

« Assume tip is not “tapping” the
surface--valid for a limited operating _—
range
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Quantitative Nanoscale Charge Imaging

Experimental EFM Image of Charged Si Fit results:
Nanoparticle Floating Gate: | - total charge = 200 electrons
T ' ec=140nm [ Data
30 —Fit
25 z
’gzo //
515 /’ \
o | )
; 10 // \\
LL -
Image Simulation (w/ Tip < // \\
C lution C tion: _ J
onvolution Correction 0 ] \\\\
* 0.6 l 0.8 ' 1.0 ' 1.2 ' 14 l 1.6
X (m)

Amount of stored charge
can be determined

1000

[nm) -1000" "-1000 (o)
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Goal of electrostatic modeling

« Calculated “images” qualitatively match experimental
results

« Quantitative comparison will allow the amount of charge
deposited, charge distribution and discharging
mechanism to be determined from AFM images

500 400 300 200 -100 0 100 200 300 400 500
{nn)
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Aerosol Synthesis of Si Nanocrystals

Temperature Profile

FiY ALY
Step 3:
Deposition chamber
Step 2: (thermophoretic)
Oxidation
furnace
1000°C

~ Aerosol synthesis and thermophoretic deposition can
' produce uniform layers of Si nanocrystals. ‘
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Nanocrystal Deposition

Planar view TEM of an aerosol
nanocrystal monolayer.

Crystal size = 4-5nm
Particle density = 6x1072 cm-

Spherical, crystalline nanoparticle layers with tight size
control and good areal coverage have been obtained
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Particle manipulation with an AFM

* Image in tapping
mode

"~ 90nm

~» Manipulate in contact
mode
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Individual Nanocrystal Charging/Discharging

Before charging After charging >
T=0s

After charging
T=11800s

has been observed
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Nanocrystal Charging/Discharging by AFM

Y 5y i4 - T T T T T T
\%3 - : 7
I ®
%2 — ) * .
i oot
\ %1 B . [ ] [ ] .
changes as Parttcle - =l
charges and - Bot i}
dzscharges < |
. I after 11800 seconds, |
. apparent height is 28.5 nm
a smgle nanocrystali 281 P ° i
can be momtored [ '
27 | 1 | X | 1 I 1 | 1 |

0 200 400 600 800 1000
Elapsed Time after Charging (s)
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AFM Tip-Charge Distribution Interaction

(aerosol samples)

Now include topography
(single particle)

ot at

| (ththjath)§

Substrate

Trapped charge gs.
at (Xg;, Y, Zgj) ON
particle
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Comparison: Data and Model

—

-

Data
— 200nm ——»

Lateral distance

Model can reproduce the nanocrystal discharging
behavior and yields the amount of charge stored.

Lucent Techewilogias
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- An AFM may be used to manipulate and E{

AFM Charging of Nanocrystals: Summary

charge size-controlled Si nanocrystals

anocrystals ™ urféEfe"%féte » Charge traps in films
or - — ; 5 containing nanocrystals
interface 00 L Rl geferts inakide  are not bulk oxide
states | | E>< defects
gu
g » Average charge density deposited can be found
3o from modeling

0

1190 1195  12.00
Time (ms)

« The main discharge path appears to be
to the substrate
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Conclusions

* Si Nanocrystal charging has been accomplished with a
conducting-tip AFM

« Both individual nanocrystals on an oxide surface and
nanocrystals formed by implantation have been charged.

* Discharging is consistent with tunneling through a field-
lowered oxide barrier

* Modeling of the response of the AFM to trapped charge
has allowed estimation of the quantity of trapped charge.

* Initial attempts to fabricate competitive nanocrystal non-
volatile memories have been extremely successful.

g o
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